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LETTER TO THE EDITOR 

Ground state properties of the classical two-dimensional 
frustrated Heisenberg magnet 

K Y Szetoi and Yihren WuS 
t Department of Physics, York University, Toronto, Ontario M3J 1P7, Canada 
$ Department of Mathematics, Hofstra University, Hempstead, NY 11550, USA 

Received 13 November 1989 

Abstract. The ground state of the classical Heisenberg magneton a square lattice with dilute 
frustrated bonds is discussed in the context of the homotopy group. It is shown that in general 
the ground state of the two-dimensional frustrated Heisenberg system is XY-like. In the 
special case of one frustrated bond an analytical expression for the ground state is given. A 
relation to high-temperature superconductivity in La,CuO, is suggested. 

The ground state of a classical Heisenberg magnet on a square lattice is well known, as 
is the corresponding topological analysis of the local energy minimum states in terms of 
instanton numbers [ l ] .  However, as soon as frustrated bonds are introduced, such as in 
the model of Aharony et a1 [2,3] for La2Cu04,  the ground state properties are found to 
be drastically different. Instead of the isotropic Ising-like ground state of uniform 
magnetisation, we find that static frustrated bonds force the Heisenberg system to 
behave like an X Y  magnet with frustration. This is in fact what we observed in the 
magnetic ordering of the Cu spins in La2Cu04 from neutron scattering experiments [4], 
which is also in agreement with a high-temperature series analysis of the susceptibility 
data [ 5 ] .  In this letter, we provide a mathematical justification of the X Y  nature of the 
ground state of the frustrated Heisenberg system. In particular, for a system with only 
one frustrated bond, the ground state spin configuration is explicitly given. 

We first consider a classical nearest-neighbour Heisenberg ferromagnet on a square 
lattice with the following Hamiltonian: 

&(s) = -1 c. s(r) s(r ' ) .  
( r . r ' )  

Here r = m# + myj defines a discrete point on a square lattice on which sits a unit- 
magnitude classical three-component spin s. Thus a spin configuration is a map 
s : %* + Y 2  where % denotes the set of integers and Y 2  the sphere. Since the ground state 
of a classical ferromagnet is given by a state of uniform magnetisation, we assume 
that for an unfrustrated system the ground state is given by the spin configuration, 
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I = {s(r) = i, Vr}. Here (l, 1, k )  form a standard Cartesian basis for CR3. A normalised 
Hamiltonian is given by 

which, in the continuum limit, is 

By a stereographic projection Y2+ %, Belavin and Polyakov [l] have shown that the 
Euler-Lagrange equation becomes the Cauchy-Riemann equation, and the cor- 
responding instanton solutions are analytic. 

If there is one frustrated bond of strength K joining ro = (0,O) and rl = (1,0), the 
Hamiltonian in equation (1) becomes 

AI = -J s(r) - s(rr) + ( K  + J)s(ro) - s ( r l )  
( r . r ’ )  

(4) 

We will only consider the special case where K b J ,  which is the case most relevant to 
La2Cu0, [2,3]. In this case the minimum energy spin configuration must have s(ro) = 
-s(rl). By normalisation similar to equation ( 2 ) ,  we have 

J 
H l ( s )  = H1(s) - H 1 ( Z )  = - 2 (s(r - s(r’))’ - 2(K  + J) .  ( 5 )  2 (r.r’)  

To determine the ground state configuration, we can normalise further by dropping the 
last term in equation ( 5 ) .  Thus the resulting expression is the same as for the unfrustrated 
case (equation (2)), with the understanding that now the spin configuration satisfies the 
boundary condition s(ro) = -s(rl). Let us define the spin space coordinate axis k by s(ro) 
for this frustrated spin system. The other two axes land; are defined arbitrarily to form 
an orthogonal system. We now claim that the minimum energy spin configuration of (4) 
is XY-like. 

In general, we can represent s(r) by (q(r) ,  8(r)) with respect to ( i , j ,  k )  so that 
A , .  n 

s(r) s(r’) = cos( q ( r )  - q(r’)) sin( 8(r)) sin( O(r’)) + cos( 8(r)) cos( 8(r’)). (6) 

Note that 0 s sin(O(r)> sin(O(r’)) because 0 G 8 G n. The minimum of HI is 
achieved when the prefactor cos(q(r) - cp(r’)) in equation (5) is equal to 1. This implies 
that 

s(r) s(rr) = cos( 8(r) - 8(r’)> (7) 

is a necessary condition for the minimum energy spin configuration. Thus the ground 
state is XY-like. Note also that in the ground state the spins span only half of a circle 
0 G 8 s n. For the case with n static frustrated bonds of strength K b J ,  the cor- 
responding Hamiltonian is adjusted by 2n(K + J )  instead of 2(K  + J )  and all the spins 
on the frustrated bonds are antiparallel and along some common direction k .  The ground 
state of a Heisenberg magnet with n frustrations is again XY-like. 

In the continuous limit, the spin configuration {s(r’)} is discontinuous at the frustrated 
bonds. Since homotopy theory is not equipped to handle discontinuous functions, it is not 
possible to recover the analogous statement of Belavin and Polyakov on the analyticity of 



Letter to the Editor 1039 

the local minimum states and their classification by instanton numbers. We now present 
a normalisation procedure to circumvent this problem of discontinuity of s at frustrated 
bonds. We define the core size of the frustration to be the disk centred at the midpoint 
of the frustrated bond with radius E .  Furthermore, we assume that the energy E, within 
the core is the same for any local minimum energy spin configuration, thereby allowing 
us to normalise the energy by subtracting off E,. This assumption is a physical one since 
the frustrated bonds only produce small perturbations to the unfrustrated system and 
the local minimum energy spin configuration should therefore be determined by some 
global spin arrangement. The normalised energy expression for a frustrated system is 
thus the same as equation (3) with specific boundary conditions to be defined around 
the cores of frustrated bonds. 

Since the ground state is XY-like, we may assume s(r) = (cos(v(r)), sin(v(r)) with 
q( r )  + 0 as Irl+ =. We may further assume that there is one frustrated bond centred at 
the origin along the f direction and the bond length is 2 ~ .  In the continuous limit, E + 0 
and the statement s(ro) = -s(r,) implies that the spin angle changes discontinuously, 

q ( x  = - E ,  y = 0 )  = ?G + q ( x  = E ,  y = 0) .  (8) 

Treating the frustrated bond as a source term p(r) at the origin, and recalling that without 
frustration, the Green function G in two dimensions is 

G(r) = - (1 /2n )  log r + c (9) 

where c is a constant, we can then write in a general form the solution for 11, as 

q(r)  = 1 dx’ dy’ G(x - x’, y - y ’ ) p ( x ’ ,  y ’ )  (10) 

so that 

fo r r#O 

for r = 0. 

According to condition (8), 

Using p(r) = (d/dx)S(2)(r) in (lo),  we obtain 

q(r)  = c1x/(x2 + y 2 )  + c2 (13) 

where c1 and c2 are constants. We must take c2 = 0 so that q(1r .+ m) + 0. To relate to 
the size 2~ of the frustrated bond, we get for v(x = * E ,  y = 0 )  = k n / 2  the following 
solution for the ground state spin configuration of the Heisenberg system with one 
frustrated bond: 

v ( x ,  Y )  = (Jd/2) 4 ( x 2  + Y 2 > .  (14) 

Note that the range of $I is the half circle -n /2  S q S n / 2 .  
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The ground state solution of equation (14) exhibits some obvious symmetries. First, 
+ n/2 and define the following we change to the usual coordinates on Y2  by using 0 = 

map o: Y2+ Y2:  

4 s i  9 sj  , s k )  = (si 9 sj 9 - s k ) .  

d - x ,  Y )  = d x ,  Y >  

s(x ,  -Y )  = s ( x ,  Y ) .  

(15) 

(16a) 

(16b) 

The ground state s ( x ,  y )  satisfies the following symmetries: 

We denote by 9 the plane with the core removed, 9 = { ( x ,  y)lx2 + y 2  2 E ~ } ,  and by 93 
the boundary 93 = { ( x ,  y) (x2 + y 2  = E ~ } .  All spin states are smooth o n 9 .  The observation 
of the ground state configuration suggests that the symmetry properties (16a), (16b) 
should persist around the frustrated site for local minimum spin states, and we will 
henceforth assume this to be the case. That is, we assume that if s : 9 + Y2  is a local 
energy minimum spin configuration, then we have S ( E ,  0) = k ,  s(lr + a) = and {s(r)}  
processes the symmetry properties (16a), (16b) on the core boundary 93. 

By definition, two local energy minimum spin configurations are homotopic if they 
are homotopic through local minimum spin configurations. Explicitly, so and s1 are 
homotopic if there exists s,: 9 + Y 2  such that s, = so at t = 0 and s, = s1 at t = 1, and 
satisfies for all 0 d t d 1 the following four properties: 

(a) s,(lrl+ x.) = i^ 

(4 Sf@> -Y> = s,(x,  Y >  V(x, y )  E 93. 
With this definition, we now show that the homotopy class is determined by an instanton 
number Q equal to the number of covers of the sphere, analogously to the unfrustrated 
situation. 

Although the extended domain 9 U {a} is contractible to a point, this homotopy 
problem is non-trivial due to the boundary conditions on s. First we can use the conformal 
map 1/z to map 9 U {x.} to a disk of radius 1 / ~ .  We can then glue the upper semicircle 
of this disk to the lower one by symmetry property (d). The resulting object is homotopic 
to a sphere, and the problem is reduced to the calculation of n2(Y2) 3. Note that the 
symmetry properties (a)-(d) prevent the functions s from being homotopic to a constant. 
The Q = 0 homotopy class is described by equation (14) and is the global minimum. 
Finally, it is anticipated that a local energy minimum spin configuration with lower 
instanton number has lower energy, since the instanton number arises from the topology 
of the spin arrangement outside the core. 

For many frustrated bonds, as long as there is no hopping, the stationary situation 
can be treated as analogous to the case with one frustrated bond. Suppose that there are 
n frustrated bonds with midpoints located a tp l ,  , . . , pn with orientations ui = Z o r j .  Let 
the spins sitting on these frustrated bonds be s(p, t mi) = k u L .  We can define symmetry 
for the core boundary around each point p ,  and consider functions satisfying the n 
boundary conditions of equation (16). In real physical systems, this formulation of the 
topological classification of the spin configuration is complicated by the dynamical nature 
of the spins which can rotate, and of the frustrated bonds which can hop. Symmetry 
property (a) should hold as long as the density of the frustrated bond is sufficiently small, 
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as in the case for La2Cu04 where the typical hole density range is below 0.3 [6]. 
The symmetry property (b) is modified to accommodate the bond orientation U;, but 
otherwise we expect it to hold as long as K B J .  Problems arise in (c) and (d) because 
now the boundary Pi3 is no longer well defined. We expect, instead of a tiny core around 
the frustrated bonds, a string of site spins perturbed by the hopping holes that create the 
frustrated bonds. The typical size of the patch of spins perturbed by the hopping holes 
is determined by the hopping kinetic energy Eh and the magnetic exchange J .  If J B Eh,  
then the site spins will quickly rotate so as to adjust to the local environment as soon as 
the hole hops to their neighbourhood, to create a frustrated bond. This is a quasi-static 
scenario which allows one to define a core boundary and apply the above notion of 
homotopy. On the other hand, when J Eh,  the site spins will take a typical time t = 
1/J to rotate, but within this time the hole has hopped away, rendering the notion of a 

core of frustration obsolete. These results can equally apply to the case of one or 
several ferromagnetic frustrated bonds of strength K' = - K on an antiferromagnetic 
Heisenberg magnet of strength J' = -J-we just have to partition the square lattice 
into two sublattices. Indeed, the above remarks on La2Cu04 assume ferromagnetic 
frustrated bonds in an antiferromagnet. 

These investigations into the ground state properties of Heisenberg magnets with 
frustrations indicate the relevance of the X Y  model in the study of classical spin systems. 
It is expected that these results should have relevance in the corresponding quantum 
systems as we replace the bare coupling J and K by the renormalised values [7]. 

Discussion with Dr T K Ng is appreciated. K Y Szeto acknowledges support via grant 
(Canada) NSERC-URF0035153. 
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